Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Franz Dornhaus, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.114 Data-to-parameter ratio = 19.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-tert-butylphosphine oxide

The title compound, $C_8H_{19}OP$, is the oxidation product of ${}^{t}Bu_2PH$. The molecule is located on a crystallographic mirror plane. As a result, there is just one half-molecule in the asymmetric unit.

Received 31 January 2005 Accepted 7 February 2005 Online 12 February 2005

Comment

Transition metal complexes with phosphine ligands, PR_3 (R = alkyl, aryl, H) play an important role in homogeneous catalysis (Holleman & Wiberg, 1995). A disadvantage of these ligands is their air sensitivity. Upon standing under atmospheric conditions, they are oxidized to the corresponding phosphine oxide R_3PO (R = alkyl, aryl, H). We report here the synthesis and the X-ray crystal structure analysis of di-*tert*-butyl-phosphine oxide, ¹Bu₂HPO, (I). The synthesis of (I) was achieved by air oxidation of ¹Bu₂PH, as indicated in the scheme below.

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7; Mogul Version 1.0.1; Allen, 2002). A crystallographic mirror plane perpendicular to the *b* axis runs through HP=O. Therefore, there is just one half-molecule in the asymmetric unit.

Experimental

Air oxidation of di-*tert*-butylphosphine (0.5 ml) for 2 d yields di-*tert*-butylphosphine oxide (yield 20%). Single crystals of di-*tert*-butylphosphine oxide were grown from the reaction mixture at ambient temperature. The NMR spectra were recorded on a Bruker DPX 250 and a Bruker Avance 400 spectrometer.¹H NMR (C₆D₆, internal TMS): δ 0.97 (d, 2 × 'Bu, ³J_{PH} = 14.64 Hz), 5.82 (d, 1H, ¹J_{PH} = 422.40 Hz). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ 25.6 (d, 2 × CMe₃, ²J_{PC} = 1.41 Hz), 33.5 (d, 2 × CMe₃, ¹J_{PC} = 59.29 Hz). ³¹P NMR (C₆D₆, external H₃PO₄): δ 63.5 (dm, ¹J_{PH} = 422.40 Hz, ³J_{HP} = 14.64 Hz).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Perspective view of the title compound with the atom numbering and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $x, -y + \frac{1}{2}, z$.]

Crystal data

C₈H₁₉OP $M_r = 162.20$ Orthorhombic, Pnma a = 10.4244 (10) Åb = 15.9819 (16) Å c = 6.0919 (7) Å V = 1014.92 (18) Å³ Z = 4 $D_x = 1.062 \text{ Mg m}^{-3}$

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)

 $T_{\rm min}=0.915,\ T_{\rm max}=0.979$ 6207 measured reflections

Mo $K\alpha$ radiation Cell parameters from 7754 reflections $\theta = 3.8 - 25.6^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 173 (2) K Plate, colourless $0.42\,\times\,0.18\,\times\,0.05$ mm

985 independent reflections 885 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.051$ $\theta_{\rm max} = 25.5^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 19$ $l = -7 \rightarrow 7$

Refinement

H atoms treated by a mixture of $\Delta \rho_{min} = -0.52 \text{ e A}$ Extinction correction: SHELXL9	S = 1.06 985 reflections 51 parameters H atoms treated by a mixture of	$\begin{array}{l} (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.49 \text{ e} \text{ Å}^{-3} \\ \Delta\rho_{min} = -0.32 \text{ e} \text{ Å}^{-3} \\ \text{Extinction correction: SHELXL97} \end{array}$
H atoms treated by a mixture of independent and constrained refinement Extinction coefficient: 0.011 (5)	H atoms treated by a mixture of independent and constrained refinement	Extinction correction: <i>SHELXL97</i> Extinction coefficient: 0.011 (5)

Table 1 Selected bond lengths (Å).

P1-O1	1.4819 (19)	P1-H1	1.28 (3)
P1-C1	1.8484 (16)		

All H atoms were located in a difference map and were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(P)]$ or $1.5U_{eq}(C)$] using a riding model (C-H = 0.98 Å). In addition, the P-H bond length was refined.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Holleman, A. F. & Wiberg, E. (1995). Lehrbuch der Anorganischen Chemie, 101 ed. Berlin: de Gruyter.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.